Exercise 14 Solutions
1. Expand the following by the binomial theorem:
(a) (x2+2a)5
Ans.
Using the binomial theorem, (a+b)n=∑k=0n(kn)an−kbk.
Here, a=x2, b=2a, and n=5.
(x2+2a)5=(05)(x2)5(2a)0+(15)(x2)4(2a)1+(25)(x2)3(2a)2+(35)(x2)2(2a)3+(45)(x2)1(2a)4+(55)(x2)0(2a)5Calculating each term:
- (05)(x2)5(2a)0=1⋅x10⋅1=x10
- (15)(x2)4(2a)1=5⋅x8⋅2a=10ax8
- (25)(x2)3(2a)2=10⋅x6⋅4a2=40a2x6
- (35)(x2)2(2a)3=10⋅x4⋅8a3=80a3x4
- (45)(x2)1(2a)4=5⋅x2⋅16a4=80a4x2
- (55)(x2)0(2a)5=1⋅1⋅32a5=32a5
Final expansion:
(x2+2a)5=x10+10ax8+40a2x6+80a3x4+80a4x2+32a5(b) (x−a)4
Ans.
Here, a=x, b=−a, and n=4.
(x−a)4=(04)(x)4(−a)0+(14)(x)3(−a)1+(24)(x)2(−a)2+(34)(x)1(−a)3+(44)(x)0(−a)4Calculating each term:
- (04)x4(−a)0=1⋅x4⋅1=x4
- (14)x3(−a)1=4⋅x3⋅(−a)=−4ax3
- (24)x2(−a)2=6⋅x2⋅a2=6a2x2
- (34)x(−a)3=4⋅x⋅(−a)3=−4a3x
- (44)(−a)4=1⋅(−a)4=a4
Final expansion:
(x−a)4=x4−4ax3+6a2x2−4a3x+a4(c) (x+2y)6
Ans.
Here, a=x, b=2y, and n=6.
(x+2y)6=(06)x6(2y)0+(16)x5(2y)1+(26)x4(2y)2+(36)x3(2y)3+(46)x2(2y)4+(56)x1(2y)5+(66)x0(2y)6Calculating each term:
- (06)x6(2y)0=1⋅x6⋅1=x6
- (16)x5(2y)1=6⋅x5⋅2y=12yx5
- (26)x4(2y)2=15⋅x4⋅4y2=60y2x4
- (36)x3(2y)3=20⋅x3⋅8y3=160y3x3
- (46)x2(2y)4=15⋅x2⋅16y4=240y4x2
- (56)x(2y)5=6⋅x⋅32y5=192y5x
- (66)(2y)6=1⋅64y6=64y6
Final expansion:
(x+2y)6=x6+12yx5+60y2x4+160y3x3+240y4x2+192y5x+64y6(d) (x+x1)5
Ans.
Here, a=x, b=x1, and n=5.
(x+x1)5=(05)x5(x1)0+(15)x4(x1)1+(25)x3(x1)2+(35)x2(x1)3+(45)x1(x1)4+(55)x0(x1)5Calculating each term:
- (05)x5(x1)0=1⋅x5⋅1=x5
- (15)x4(x1)1=5⋅x4⋅x1=5x3
- (25)x3(x1)2=10⋅x3⋅x21=10x
- (35)x2(x1)3=10⋅x2⋅x31=x10
- (45)x(x1)4=5⋅x⋅x41=x35
- (55)(x1)5=1⋅x51=x51
Final expansion:
(x+x1)5=x5+5x3+10x+x10+x35+x51(e) (3x+2y)4
Ans.
Using the binomial theorem, (a+b)n=∑k=0n(kn)an−kbk.
Here, a=3x, b=2y, and n=4.
(3x+2y)4=(04)(3x)4(2y)0+(14)(3x)3(2y)1+(24)(3x)2(2y)2+(34)(3x)1(2y)3+(44)(3x)0(2y)4Calculating each term:
- (04)(3x)4(2y)0=1⋅81x4⋅1=81x4
- (14)(3x)3(2y)1=4⋅27x3⋅2y=216yx3
- (24)(3x)2(2y)2=6⋅9x2⋅4y2=216y2x2
- (34)(3x)1(2y)3=4⋅3x⋅8y3=96y3x
- (44)(2y)4=1⋅16y4=16y4
Final expansion:
(3x+2y)4=81x4+216yx3+216y2x2+96y3x+16y4(f) (ax−xa)6
Ans.
Here, a=ax, b=−xa, and n=6.
(ax−xa)6=(06)(ax)6(−xa)0+(16)(ax)5(−xa)1+…+(66)(xa)0(−xa)6Calculating each term:
- (06)(ax)6=(ax)3=a3x3
- (16)(ax)5⋅(−xa)=−6a5/2⋅x1/2x5/2⋅a1/2=−6a2x2
- (26)(ax)4⋅(−xa)2=15a2x2=15ax
- (36)(ax)3⋅(−xa)3=−20
- (46)(ax)2⋅(−xa)4=15xa
- (56)(ax)1⋅(−xa)5=−6x2a2
- (66)(xa)6=x3a3
Final expansion:
(ax−xa)6=a3x3−6a2x2+15ax−20+15xa−6x2a2+x3a32. Find the value of the following with the help of the binomial theorem:
(a) (1+5)5+(1−5)5
Let’s denote (1+5)=a and (1−5)=b.
We need to find a5+b5.
Using the identity:
a5+b5=(a+b)(a4−a3b+a2b2−ab3+b4)Here, a+b=2 and ab=(1+5)(1−5)=1−5=−4.
Substituting a+b=2 and ab=−4, the expression simplifies to:
(2)(24+10(4))=0Hence, (1+5)5+(1−5)5=0.
(b) (2+3)6+(2−3)6
Similarly, let a=2+3 and b=2−3.
We need to find a6+b6.
Using the identity:
a6+b6=(a2+b2)(a4−a2b2+b4)Calculating a2+b2:
a2+b2=(2+3)2+(2−3)2=2+26+3+2−26+3=10Calculating a2b2:
a2b2=(2−6)⋅(2+6)=10Final result:
(2+3)6+(2−3)6=10(c) (1+25)5+(1−25)5
Let’s denote a=(1+25) and b=(1−25).
We need to find a5+b5.
Using the identity:
a5+b5=(a+b)(a4−a3b+a2b2−ab3+b4)Calculating a+b and ab:
a+b=(1+25)+(1−25)=2 ab=(1+25)(1−25)=1−(25)2=1−20=−19Using this, we can rewrite the identity as:
a5+b5=2(a4−a3b+a2b2−ab3+b4)We notice that all odd power terms in a and b will cancel out due to symmetry, so the final answer will involve only even terms. Simplifying, we get:
(1+25)5+(1−25)5=2(1+5+50+2500)=2×2556=5112Hence, (1+25)5+(1−25)5=5112.
(d) (3+2)5+(3−2)5
Let’s denote a=(3+2) and b=(3−2).
We need to find a5+b5.
Using the identity:
a5+b5=(a+b)(a4−a3b+a2b2−ab3+b4)Calculating a+b and ab:
a+b=(3+2)+(3−2)=6 ab=(3+2)(3−2)=9−2=7So the simplified expression becomes:
(3+2)5+(3−2)5=6(1+5⋅7+10⋅72+10⋅73+5⋅74)Calculating step-by-step:
6(1+35+490+3430+12005)=6×15961=95766Hence, (3+2)5+(3−2)5=95766.
3. Find the value of the following with the help of the binomial theorem:
(a) (101)4
Ans.
We can express 101 as (100+1).
Using the binomial theorem:
(100+1)4=(04)1004⋅10+(14)1003⋅11+(24)1002⋅12+(34)1001⋅13+(44)14Calculating each term:
- (04)1004⋅1=100000000
- (14)1003⋅1=4000000
- (24)1002⋅1=60000
- (34)1001⋅1=400
- (44)1=1
Adding all the terms:
(100+1)4=100000000+4000000+60000+400+1=104060401Hence, (101)4=104060401.
(b) (99)5
Ans.
We can express 99 as (100−1).
Using the binomial theorem:
(100−1)5=(05)1005⋅(−1)0+(15)1004⋅(−1)1+(25)1003⋅(−1)2+(35)1002⋅(−1)3+(45)1001⋅(−1)4+(55)(−1)5Calculating each term:
- (05)1005⋅1=10000000000
- (15)1004⋅(−1)=−500000000
- (25)1003⋅1=10000000
- (35)1002⋅(−1)=−100000
- (45)1001⋅1=500
- (55)(−1)=−1
Adding all the terms:
(100−1)5=10000000000−500000000+10000000−100000+500−1=9500999499Hence, (99)5=9500999499.
(c) (10.1)5
Ans.
We can express 10.1 as (10+0.1).
Using the binomial theorem:
(10+0.1)5=(05)105⋅(0.1)0+(15)104⋅(0.1)1+(25)103⋅(0.1)2+(35)102⋅(0.1)3+(45)101⋅(0.1)4+(55)(0.1)5Calculating each term:
- (05)105⋅(0.1)0=100000
- (15)104⋅(0.1)1=5000
- (25)103⋅(0.1)2=100
- (35)102⋅(0.1)3=1
- (45)101⋅(0.1)4=0.005
- (55)(0.1)5=0.00001
Adding all the terms:
(10.1)5=100000+5000+100+1+0.005+0.00001=105101.00501Hence, (10.1)5=105101.00501.
(d) (1.1)4
Ans.
We can express 1.1 as (1+0.1).
Using the binomial theorem:
(1+0.1)4=(04)(1)4⋅(0.1)0+(14)(1)3⋅(0.1)1+(24)(1)2⋅(0.1)2+(34)(1)1⋅(0.1)3+(44)(0.1)4Calculating each term:
- (04)(1)4⋅(0.1)0=1
- (14)(1)3⋅(0.1)1=0.4
- (24)(1)2⋅(0.1)2=0.06
- (34)(1)1⋅(0.1)3=0.004
- (44)(0.1)4=0.0001
Adding all the terms:
(1+0.1)4=1+0.4+0.06+0.004+0.0001=1.4641Hence, (1.1)4=1.4641.
4. Find the indicated term in the expansion of the following:
(a) 5th term of (a+2x3)17
Ans.
The general term in the expansion of (a+2x3)17 is given by:
Tr+1=(r17)a17−r(2x3)rWe need to find the 5th term, which means r=4.
Substitute r=4 into the general formula:
T5=(417)a17−4(2x3)4Calculating step-by-step:
- (417)=4×3×2×117×16×15×14=2380
- a17−4=a13
- (2x3)4=24×(x3)4=16x12
Combining these, we get:
T5=2380×a13×16x12=38080a13x12Hence, the 5th term is 38080a13x12.
(b) 5th term of (x−2)8
Ans.
The general term in the expansion of (x−2)8 is given by:
Tr+1=(r8)x8−r(−2)rWe need to find the 5th term, which means r=4.
Substitute r=4 into the general formula:
T5=(48)x8−4(−2)4Calculating step-by-step:
- (48)=4×3×2×18×7×6×5=70
- x8−4=x4
- (−2)4=16
Combining these, we get:
T5=70×x4×16=1120x4Hence, the 5th term is 1120x4.
(c) 6th term of (x2−2x2)9
Solution.
The general term in the expansion of (x2−2x2)9 is given by:
Tr+1=(r9)(x2)9−r(−2x2)rWe need to find the 6th term, which means r=5.
Substitute r=5 into the general formula:
T6=(59)(x2)9−5(−2x2)5Calculating step-by-step:
- (59)=4×3×2×19×8×7×6=126
- (x2)9−5=(x2)4=x416
- (−2x2)5=32(−1)5×x10=−32x10
Combining these, we get:
T6=126×x416×(−32x10)Simplifying further:
T6=126×(−21)×x6=−63x6Hence, the 6th term is −63x6.
(d) 10th term of (x−x1)12
Solution.
The general term in the expansion of (x−x1)12 is given by:
Tr+1=(r12)x12−r(−x1)rWe need to find the 10th term, which means r=9.
Substitute r=9 into the general formula:
T10=(912)x12−9(−x1)9Calculating step-by-step:
- (912)=(312)=3×2×112×11×10=220
- x12−9=x3
- (−x1)9=x9(−1)9=−x91
Combining these, we get:
T10=220×x3×(−x91)=−220×x9x3=−220×x61=−x6220Hence, the 10th term is −x6220.
(e) 25th term of (yx−xy)26
Solution.
The general term in the expansion of (yx−xy)26 is given by:
Tr+1=(r26)(yx)26−r(−xy)rWe need to find the 25th term, which means r=24.
Substitute r=24 into the general formula:
T25=(2426)(yx)26−24(−xy)24Calculating step-by-step:
- (2426)=(226)=226×25=325
- (yx)26−24=(yx)2=yx
- (−xy)24=x12y24 (since (−1)24=1)
Combining these, we get:
T25=325×yx×x12y24=325×x11y23Hence, the 25th term is x11325y23.
5. Find the middle terms in the expansion of the following:
To find the middle term(s) in the expansion of a binomial expression, we first need to determine the number of terms in the expansion and then identify the middle one or two terms depending on whether the total number of terms is odd or even.
(a) (x−x1)10
Solution.
The number of terms in this expansion is 10+1=11.
Since the number of terms is odd, there will be a single middle term, which is the 6th term.
The general term in the expansion is:
Tr+1=(r10)x10−r(−x1)rFor the middle term, r=5:
T6=(510)x10−5(−x1)5Calculating step-by-step:
- (510)=252
- x10−5=x5
- (−x1)5=x5(−1)5=−x51
Combining these, we get:
T6=252×x5×(−x51)=−252Hence, the middle term is −252.
(b) (3a−2b)6
Solution.
The number of terms in this expansion is 6+1=7.
Since the number of terms is odd, there will be a single middle term, which is the 4th term.
The general term in the expansion is:
Tr+1=(r6)(3a)6−r(−2b)rFor the middle term, r=3:
T4=(36)(3a)3(−2b)3Calculating step-by-step:
- (36)=20
- (3a)3=27a3
- (−2b)3=8−b3
Combining these, we get:
T4=20×27a3×8−b3=216−20a3b3Simplifying further:
T4=−545a3b3Hence, the middle term is −545a3b3.
(c) (y+x)11
Solution.
The number of terms in this expansion is 11+1=12.
Since the number of terms is even, there will be two middle terms, the 6th and 7th terms.
6th Term:
The general term is:
Tr+1=(r11)y11−rxrFor the 6th term, r=5:
T6=(511)y11−5x5Calculating step-by-step:
- (511)=462
- y11−5=y6
- x5=x5
Combining these, we get:
T6=462y6x5Hence, the 6th term is 462y6x5.
7th Term:
For the 7th term, r=6:
T7=(611)y11−6x6Calculating step-by-step:
- (611)=462
- y11−6=y5
- x6=x6
Combining these, we get:
T7=462y5x6Hence, the 7th term is 462y5x6.
The middle terms are:
462y6x5and462y5x6(d) (3a−6a3)9
Ans.
The number of terms in this expansion is 9+1=10.
Since the number of terms is even, there will be two middle terms, the 5th and 6th terms.
5th Term:
The general term is:
Tr+1=(r9)(3a)9−r(−6a3)rFor the 5th term, r=4:
T5=(49)(3a)9−4(−6a3)4Calculating step-by-step:
- (49)=126
- (3a)5=243a5
- (−6a3)4=1296a12
Combining these, we get:
T5=126×243a5×1296a12=129630618a17Simplifying further:
T5=721701a176th Term:
For the 6th term, r=5:
T6=(59)(3a)4(−6a3)5Calculating step-by-step:
- (59)=126
- (3a)4=81a4
- (−6a3)5=7776−a15
Combining these, we get:
T6=126×81a4×7776−a15=7776−10206a19Simplifying further:
T6=1296−1701a19The middle terms are:
721701a17and1296−1701a196. Expand the following up to 4 terms:
In this question, we need to expand the given expressions using the Binomial Theorem up to the first four terms.
(a) (1−2x)21
Solution.
The general binomial expansion for (1+x)n up to four terms is:
1+nx+2!n(n−1)x2+3!n(n−1)(n−2)x3+…In this case, n=21 and x=−2x.
(1−2x)21=1+21(−2x)+221(21−1)(−2x)2+621(21−1)(21−2)(−2x)3+…Calculating step-by-step:
First term: 1
Second term: 21×(−2x)=−4x
Third term:
221(21−1)×(−2x)2=221×(−21)×4x2=8−1/4x2=−32x2Fourth term:
621(21−1)(21−2)×(−2x)3=621×(−21)×(−23)×8−x3 =48−3/16x3=3843x3=128x3
Combining these, we get the expansion up to four terms:
(1−2x)21=1−4x−32x2+128x3(b) (8+x)34
Solutoin.
We will use the binomial theorem for (a+x)n. Let’s rewrite it as (8(1+8x))34.
(8+x)34=834(1+8x)34 =16(1+8x)34Using the binomial expansion for (1+x)n up to four terms:
1+348x+234(34−1)(8x)2+634(34−1)(34−2)(8x)3+…Calculating step-by-step:
First term: 1
Second term: 34×8x=6x
Third term:
234×31×64x2=22/9×64x2=576x2Fourth term:
634×31×(−32)×512x3 =6−8/81×512x3=41472−x3
Combining these, we get:
(1+8x)34=1+6x+576x2−41472x3Now, multiplying by 16:
(8+x)34=16(1+6x+576x2−41472x3) =16+616x+57616x2−4147216x3Simplifying further:
(8+x)34=16+38x+36x2−2592x3(c) (3−2x)−32
Solution.
We will use the binomial expansion for (a+x)n where n is a negative fraction. Let’s rewrite it as:
(3(1−32x))−32 =3−32(1−32x)−32Using the binomial expansion for (1+x)n up to four terms:
1−n32x+2n(n−1)(32x)2−6n(n−1)(n−2)(32x)3+…In this case, n=−32.
Calculating step-by-step:
First term: 1
Second term:
−(−32)×32x=94xThird term:
2−32×(−35)×94x2=815×4x2=8120x2Fourth term:
6−32×(−35)×(−38)×278x3 =729−80x3
Combining these, we get:
(1−32x)−32=1+94x+8120x2−72980x3Now, multiplying by 3−32:
(3−2x)−32=3−32(1+94x+8120x2−72980x3)To find the term independent of x in the expansion of (23x2−3x1)6, we need to find the term where the power of x becomes zero.
Identify the General Term: The general term in the expansion of (23x2−3x1)6 is given by:
Tr+1=(r6)(23x2)6−r(−3x1)rSimplifying, we get:
Tr+1=(r6)(26−r36−rx2(6−r))(3rxr(−1)r) Tr+1=(r6)26−r⋅3r⋅xr(−1)r⋅36−r⋅x12−2r Tr+1=(r6)26−r(−1)r⋅36−2r⋅x12−3rCondition for Term Independent of x:
The term will be independent of x when the power of x is zero, i.e., 12−3r=0.
Solving for r:
12−3r=0 3r=12 r=4Find the Term T5:
Now, substitute r=4 into the general term formula:
T4+1=(46)26−4(−1)4⋅36−2×4⋅x12−3×4Simplifying:
T5=(46)221⋅36−8⋅x0 T5=(46)43−2Since (46)=15 and 3−2=91, we have:
T5=9×415×1 T5=3615Simplify further:
T5=125
Therefore, the term independent of x in the expansion of (23x2−3x1)6 is 125.
0 Comments