Trigonometry Revision Notes BTER Polytechnic Semester 1st

 

1.1 Concept of Angles and Measurement of Angles

  • Angle: An angle is formed when two rays originate from a common point called the vertex.
  • Types of Angles:
    • Acute: Less than 90°
    • Right: 90°
    • Obtuse: Greater than 90° but less than 180°
    • Reflex: Greater than 180° but less than 360°
    • Full Rotation: 360°
  • Units of Measurement:
    • Degrees (°): A full circle is 360°.
    • Radians (rad): A full circle is 2π2\pi radians.
    • Gradians (g or gon): A full circle is 400g.
  • Conversions:
    • From Degrees to Radians:
      θ(radians)=θ(degrees)×π180\theta (radians) = \theta (degrees) \times \frac{\pi}{180}
    • From Radians to Degrees:
      θ(degrees)=θ(radians)×180π\theta (degrees) = \theta (radians) \times \frac{180}{\pi}
    • From Degrees to Gradians:
      θ(gradians)=θ(degrees)×400360\theta (gradians) = \theta (degrees) \times \frac{400}{360}
    • From Gradians to Degrees:
      θ(degrees)=θ(gradians)×360400\theta (degrees) = \theta (gradians) \times \frac{360}{400}

1.2 T-Ratios of Allied Angles (Without Proof)

  • Allied Angles: Two angles are said to be allied if their sum is 9090^\circ or π2\frac{\pi}{2} radians. For example, if θ\theta is an angle, the allied angle is 90θ90^\circ - \theta.

T-Ratios of Allied Angles:

  1. sin(90θ)=cos(θ)\sin(90^\circ - \theta) = \cos(\theta)
  2. cos(90θ)=sin(θ)\cos(90^\circ - \theta) = \sin(\theta)
  3. tan(90θ)=cot(θ)\tan(90^\circ - \theta) = \cot(\theta)
  4. cot(90θ)=tan(θ)\cot(90^\circ - \theta) = \tan(\theta)
  5. sec(90θ)=csc(θ)\sec(90^\circ - \theta) = \csc(\theta)
  6. csc(90θ)=sec(θ)\csc(90^\circ - \theta) = \sec(\theta)

1.3 Applications of Sum and Difference Formulae (Without Proof)

  • Sum and Difference Formulae:

    1. Sine:

      sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A \cos B - \cos A \sin B
    2. Cosine:

      cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B cos(AB)=cosAcosB+sinAsinB\cos(A - B) = \cos A \cos B + \sin A \sin B
    3. Tangent:

      tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}
  • Applications:

    • Simplifying trigonometric expressions
    • Solving integrals and derivatives in calculus
    • Computing angles in problems involving navigation, physics, and engineering

1.4 Product Formulae (Transformation of Product to Sum, Difference, and Vice Versa)

  • Product to Sum Formulae:

    1. sinAsinB=12[cos(AB)cos(A+B)]\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]
    2. cosAcosB=12[cos(AB)+cos(A+B)]\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]
    3. sinAcosB=12[sin(A+B)+sin(AB)]\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]
  • Sum to Product Formulae:

    1. sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right)
    2. cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right)
    3. sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos \left(\frac{A + B}{2}\right) \sin \left(\frac{A - B}{2}\right)

1.5 T-Ratios of Multiple Angles (2A, 3A)

  • Double Angle Formulae:

    1. sin(2A)=2sinAcosA\sin(2A) = 2 \sin A \cos A
    2. cos(2A)=cos2Asin2A\cos(2A) = \cos^2 A - \sin^2 A or cos(2A)=2cos2A1\cos(2A) = 2 \cos^2 A - 1 or cos(2A)=12sin2A\cos(2A) = 1 - 2 \sin^2 A
    3. tan(2A)=2tanA1tan2A\tan(2A) = \frac{2 \tan A}{1 - \tan^2 A}
  • Triple Angle Formulae:

    1. sin(3A)=3sinA4sin3A\sin(3A) = 3 \sin A - 4 \sin^3 A
    2. cos(3A)=4cos3A3cosA\cos(3A) = 4 \cos^3 A - 3 \cos A
    3. tan(3A)=3tanAtan3A13tan2A\tan(3A) = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}

1.6 Graphs of sinx\sin x, cosx\cos x, and tanx\tan x

  • Graph of sinx\sin x:

    • Periodicity: 2π2\pi
    • Range: [1,1][-1, 1]
    • The sine wave oscillates between -1 and 1, starting at 0 when x=0x = 0.
  • Graph of cosx\cos x:

    • Periodicity: 2π2\pi
    • Range: [1,1][-1, 1]
    • The cosine wave is similar to the sine wave but starts at 1 when x=0x = 0.
  • Graph of tanx\tan x:

    • Periodicity: π\pi
    • Range: All real numbers (R\mathbb{R})
    • The tangent function has vertical asymptotes at π2+nπ\frac{\pi}{2} + n\pi for any integer nn, and its graph shows periodic rises and falls.

These concepts are foundational for solving problems in trigonometry, physics, engineering, and various other fields of study.

Post a Comment

1 Comments